
1. INTRODUCTION

The need for unambiguous, easy-to-understand notations for
specifying and analyzing the requirements of systems is
widely recognized. Tables have been demonstrated to offer a
precise, relatively compact notation for specifying system
requirements in a wide range of applications, including
avionics systems, systems for controlling nuclear power
plants, and telephone networks (see, for example, [32, 47,
13, 53, 34]). Developers have also found tabular notations
easier to write and to understand than alternative notations,
such as Z and Petri nets. In addition, tables can be assigned a
precise mathematical semantics and thus can be analyzed
either manually or mechanically to expose defects in require-
ments specifications. Finally, tabular notations have been
demonstrated to scale to practical systems. 

In 1978, the requirements document for the flight program
of the A-7 aircraft [32, 33] introduced a special tabular nota-
tion for writing specifications. Part of the SCR (Software
Cost Reduction) requirements method, this notation was
designed to document the requirements of real-time, embed-

ded systems concisely and unambiguously. During the 1980s
and 1990s, SCR tables were used by several organizations in
industry and government, e.g. Grumman [47], Bell Laborato-
ries [34], Ontario Hydro [53], the Naval Research Laborato-
ry [31], and Lockheed [13], to document the requirements of
many practical systems, including a submarine communica-
tions system [31], the shutdown system for the Darlington
nuclear power plant [53], and the flight program for Lock-
heed’s C-130J aircraft [13]. The Lockheed specification con-
tains over 1000 tables and the corresponding flight program
over 250K lines of Ada [59] – solid evidence that the tabular
notation scales. 

Analysis of these tables for errors was largely manual. A
serious problem with manual inspections is their high cost –
the inspection of tables in the certification of the Darlington
shutdown system, for example, cost millions of dollars.
Moreover, manual inspections often miss certain classes of
specification errors software tools detect. In a study conduct-
ed in 1996, a mechanized analysis of the A-7 requirements
specification, which had previously undergone manual
inspections by two independent review teams, exposed 17
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missing cases and 57 instances of unwanted nondeterminism
within a few minutes [26]. These flaws were detected even
though the tabular format of the specification was designed
to make such flaws obvious. In a later study in 1998, soft-
ware tools exposed 28 errors, many of them serious, in a
requirements specification of a commercial flight guidance
system [49]. The detection of so many errors was surprising
given that the specification, in the words of the project leader
[48], “represented our best effort at producing a correct spec-
ification manually.”  

While human effort is critical to creating the specifica-
tions and human inspection can detect many errors, effective
and wider usage of tabular notations in industrial settings
requires powerful, robust tool support. Not only can software
tools find errors inspections miss, they can also do so more
cheaply. To explore what form tabular tools should take, we
have developed a suite of software tools for constructing and
analyzing requirements specifications in the SCR tabular
notation. The tools include a specification editor for creating
the tabular specification, a simulator for validating that the
specification satisfies the customer’s intent, a dependency
graph browser for understanding the relationship between
different parts of the specification, and a consistency checker
to analyze the specification for properties such as syntax and
type correctness, determinism, case coverage, and lack of
circularity. The toolset also contains a model checker, a veri-
fier, a property checker, and an invariant generator, all of
which are useful in analyzing specifications for critical
application properties, such as safety and security properties. 

To make the tools accessible to software developers, we
have followed two major guidelines in designing the tools.
First, the effort and expertise needed to apply the tools have
been minimized. Using the tools requires neither theorem
proving skills nor advanced mathematical training. Nor do
tool users need to understand special logics, such as temporal
or higher order logics. Second, the tools are designed to be
“pushbutton”, i.e. they analyze the specifications automati-
cally and provide useful feedback when an error is detected;
for many of the tools, this feedback is expressed in the origi-
nal tabular notation. 

In addition to ease of use, the SCR tools have two more
attributes which distinguish them from other tools developed
by researchers. First, unlike most research tools, the SCR
tools are designed to work together. This is especially true of
the SCR basic tools, i.e. the specification editor, consistency
checker, dependency graph browser, and simulator, which
we developed from scratch. The basis for tool integration is a
shared formal semantics [26, 30], i.e. the state machine mod-
el that underlies the SCR tabular notation, and a shared inter-
pretation of the tabular notation. Second, unlike the vast
majority of tools developed by researchers, some of the SCR
tools, namely, the basic tools, are already being used by
industry to develop real-world software. 

This paper has three goals. Since the introduction of the
SCR tools in a 1995 conference paper [23], many papers
have been published describing new SCR tools and tool
extensions [26, 28, 37, 15, 29, 6], the use of externally devel-
oped tools to analyze SCR specifications [7, 25, 1], and the
application of the SCR tools to practical systems, e.g. [25,
39, 27]. The first goal of this paper is to present in a single
document an overview of the current toolset and to illustrate
via a simple cruise control example how one can use the

SCR tools to create a software requirements specification, to
detect specification errors, to validate a specification (e.g.
using simulation), and to prove (or refute) that a specifica-
tion satisfies one or more application properties. 

A second goal is to describe recent enhancements to the
toolset. These include (1) the integration of a property check-
er called Salsa [6] to do consistency checking, to verify
properties, and to return candidate counterexamples when a
property cannot be proven true (see Sections 3.3 and 3.5.3),
(2) the implementation of a tool that uses the algorithms
described in [37] and [38] to construct state invariants auto-
matically (see Section 3.4.2), (3) the integration of the
TAME interface [2] to PVS [57] to verify properties and to
provide user feedback when a proof fails (see Section 3.5.2),
and (4) the design and implementation of a tool that automat-
ically constructs a sound and complete abstraction from a
property and an SCR specification (see Section 3.5.1). A
third goal is to describe the current use of the SCR tools in
software practice. In recent years, the tools have been used
routinely by a large U.S. company to construct and analyze
requirements specifications, and several new applications of
the tools to practical systems are currently in progress. 

While the toolset enhancements described in the paper are
straightforward extensions of results published in previous
papers, tool support for the development of reliable, correct
software and software systems is of growing importance. For
researchers and tool builders to be able to exploit our results
and to ease the transition of technology based on SCR into
industrial practice, what is needed is a clear, accessible
description of the SCR tools, the concepts on which they are
based, and how they can be used together to construct a con-
sistent, complete, and correct requirements specification.
This paper provides such a description and thereby a link
between academic research and industrial practice. 

The paper is organized as follows. To provide back-
ground, Section 2 reviews the formal model that underlies
the tools and the different tables used in SCR specifications.
Section 3, the body of the paper, introduces a process for
developing a requirements specification, describes how that
process can be applied using the SCR tools, and illustrates
the tools using the cruise control example. This section
describes how the tools can be used to create a tabular
requirements specification, to detect specification errors, to
validate a specification (e.g. using simulation), and to prove
properties about the specification. Section 4 describes how
the tools have been used to specify and to analyze require-
ments for practical systems. Section 5 discusses tool support
for rapid prototyping, source code and test case generation,
the trade-offs between different analysis techniques, and the
benefits of a suite of tools. Section 6 describes related tools
and toolsets. Finally, Section 7 presents some conclusions. 

2. BACKGROUND

The A-7 requirements document introduced many features of
the SCR requirements method – the tabular notation, the
underlying state machine model, and special constructs for
specifying requirements, such as conditions, events, mode
classes, and terms. Since the publication of the A-7 docu-
ment, researchers, including Faulk [14, 12] and Parnas [55],
have extended the original SCR method and strengthened its
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formal foundation. Based on this foundation, we have formu-
lated the SCR requirements model, which is briefly reviewed
in this section. For a complete exposition of the model, see
[30, 26]. This section also describes the different classes of
SCR tables and introduces a simple automobile cruise con-
trol system, used as a running example in the remainder of
the paper. 

2.1 The SCR formal model

An SCR requirements specification describes both the sys-
tem environment, which is nondeterministic, and the
required system behavior, which is usually deterministic [26,
30]. The environment contains quantities that the system
monitors, represented as monitored variables, and quantities
that the system controls, represented as controlled variables.
The environment nondeterministically produces a sequence
of monitored events, where a monitored event signals a
change in the value of some monitored variable. The system,
represented in the model as a state machine, begins execu-
tion in some initial state and then responds to each moni-
tored event in turn by changing state. In SCR as in Esterel
[5], the system behavior is assumed to be synchronous: the
system completely processes one set of inputs before pro-
cessing the next set. In SCR (in contrast to Esterel which
allows more than one input to change per transition), the One
Input Assumption allows at most one monitored variable to
change from one state to the next.  

Our state machine model, a special case of Parnas’ Four
Variable Model (FVM) [55] uses two relations of the FVM,
NAT and REQ, to define the required system behavior.
NAT, which describes the natural constraints on the system
behavior, such as constraints imposed by physical laws and
the system environment, defines the possible values of the
monitored and controlled variables. REQ defines the
required constraints that the system must maintain between
the monitored and controlled variables. To specify REQ con-
cisely, the SCR model defines two types of auxiliary vari-
ables: mode classes, whose values are called modes, and
terms. Each mode is an equivalence class of system states
useful in specifying the required system behavior. 

Our model represents a system as a state machine
∑ = (S, S0, Em, T), where S is the set of states, S0 ⊆ S is the
initial state set, Em is the set of monitored events, and T is the
transform describing the allowed state transitions [30, 26]. In
our model, the transform T is a function that maps a moni-
tored event e ∈ Em and the current state s ∈ S to the next state
s′ ∈ S; a state is a function that maps each state variable, i.e.
each monitored or controlled variable, mode class, or term, to
a type-correct value; a condition is a predicate defined on a
single system state; and an event is a predicate defined on two
system states which implies that the two states are different. 

When the value of a state variable (or more generally a
condition) changes, we say that an event “occurs”.  Given
conditions c and d, the notation “@T(c) WHEN d” denotes a
conditioned event, which is defined by 

def
@T(c) WHEN d =   ¬c ∧ c′ ∧ d

where the unprimed conditions c and d are evaluated in the
current state and the primed condition c′ is c evaluated in the

next state. (In this paper, an unprimed variable refers to the
variable value in the current state, whereas a primed variable 
refers to the variable value in the next state.) Often, the

def
WHEN d is missing; in such cases, @T(c) = @T(c) WHEN true. 

def
The notation “@F(c)” is defined by @F(c) = @T(¬c). Infor-
mally, “@T(c)” means that c becomes true and “@F(c)”
means that c becomes false. The notation “@C(x)” denotes
the event “variable x has changed value”.

2.2 The SCR tables

The transform T is the composition of smaller functions
called table functions, which are derived from the condition
tables, event tables, and mode transition tables in SCR
requirements specifications. These tables define the values
of the dependent variables – the controlled variables, mode
classes, and terms. For T to be well-defined, no circular
dependencies are allowed in the definitions of the dependent
variables. The variables are partially ordered based on the
dependencies among the next state values. 

Each table defining a term or controlled variable is either
a condition or an event table. A condition table associates a
mode and a condition in the next state with a variable value
in the next state; an event table associates a mode and a con-
ditioned event with a variable value in the next state. Each
table defining a mode class is a mode transition table, which
associates a source mode and an event with a destination
mode. Our formal model requires the information in each
table to satisfy certain properties. These properties (in partic-
ular, the Disjointness and Coverage Properties which are
described in Section 3.1) guarantee that each table describes
a total function [26]. 

2.3 Example: The Cruise Control System

To demonstrate the SCR tables and tools, we consider an
SCR specification of a simple version of a real automobile
cruise control system [40]. This Cruise Control System
(CCS) monitors several quantities in its environment, e.g.
the position of the cruise control lever and the automobile’s
speed, and uses this information to control a throttle. If the
ignition is on, the engine running, and the brake off, the driv-
er enters cruise control mode by moving the lever to the
const position. In cruise control mode, the automobile’s
speed determines whether the throttle accelerates or deceler-
ates the automobile or maintains the current speed. The driv-
er overrides cruise control by engaging the brake, resumes
cruise control by moving the lever to resume, and exits
cruise control by moving the lever to off. 

Figure 1 shows how SCR state variables can be used to
specify the CCS requirements. The monitored variables,
mIgnOn, mEngRunning, mSpeed, mBrake and mLever, repre-
sent the state of the automobile’s ignition and engine, the
automobile’s speed, and the positions of the brake and cruise
control lever. The distinguished monitored variable time
indicates time passage. The controlled variable cThrottle
represents the state of the throttle. The CCS specification
contains two auxiliary variables, a mode class mcCruise and
a term tDesiredSpeed, which capture state history and make
the specification of the required relation between the moni-
tored and controlled variables concise.
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3. THE SCR TOOLS

Section 3.1 introduces a systematic process for developing a
requirements specification and then describes how the SCR
tools can be used to support each step of this process. Sec-
tions 3.2–3.5 illustrate the tools by showing how they can be
used to create, debug, validate, and verify a tabular SCR
specification of the Cruise Control System introduced in Sec-
tion 2.3.

3.1 A process for constructing requirements 
specifications

We envision the following four-step process for constructing
a requirements specification. An idealization of a real-world
process [54], the process describes a logical sequence in
which the SCR tools can be used to create, debug, validate,
and verify a tabular requirements specification. First, a speci-
fication is developed that represents the required system
behavior in a notation, such as a tabular notation, with a
well-defined semantics. Second, the specification is analyzed
to detect and correct well-formedness errors, e.g. syntax and
type errors, missing cases, unwanted nondeterminism, and
circular definitions. Third, the specification is validated to
ensure that it captures the customers’ intent. Fourth, the
specification is analyzed first to detect violations of, and then
to verify, application properties. 

Eight tools in the SCR toolset support this four-step pro-
cess. To begin, the user invokes the Specification Editor to
create the two types of tables contained in an SCR require-
ments specification: function tables, which define the values
of the dependent variables, and tables called dictionaries,
which contain other information in the specification, such as
variable declarations, environmental assumptions, and type
definitions. 

To detect and correct well-formedness errors, the user
may invoke the Consistency Checker [26], the property
checker Salsa, and the Dependency Graph Browser [28]. The
Consistency Checker detects many well-formedness errors
automatically. To perform the most computationally com-
plex checks, the checks for the Disjointness Property (no
nondeterminism) and the Coverage Property (no missing
cases), the Consistency Checker uses an extension of the
semantic tableaux algorithm [58]. Because this technique
cannot analyze some formulae containing arithmetic expres-
sions, the property checker Salsa was developed. Salsa
applies a tightly integrated set of decision procedures, algo-
rithms that establish the truth or falsity of logic formulae, to

check specifications for Disjointness and Coverage. Once
consistency checking exposes a well-formedness error, the
user, to correct the error, often needs to understand the rela-
tionship between different parts of the specification. To do
this, the user may invoke the Dependency Graph Browser,
which displays a graph showing the dependencies among the
variables in the SCR specification. 

To validate the specification, the user may invoke the
Simulator [23, 28, 29] or the Invariant Generator [37, 38]. To
expose inconsistencies between the intended system behavior
and the behavior captured in the specification, the user may
run scenarios, where a scenario is a sequence of monitored
events, through the Simulator. Alternatively, the user may
generate state invariants – properties true of every reachable
state – from the specification using the Invariant Generator
and then ask customers or others familiar with the system
under development whether the generated invariants accu-
rately describe the intended behavior. When inconsistencies
between the desired behavior and the invariants are found,
the specification can be modified to remove the inconsisten-
cies. 

To analyze an SCR specification for application proper-
ties, the user can apply any one of three tools – a model
checker, the verifier TAME [2], or the property checker Sal-
sa. Such analysis may expose a property violation: either the
property or the specification is incorrect. Once such errors
are corrected, the user may be able to verify selected proper-
ties. The user can invoke a model checker, such as the
explicit state model checker SPIN [35], to analyze a finite
state model of the SCR specification for application proper-
ties. Alternatively, the user may apply the verifier TAME, a
specialized interface to the general-purpose theorem prover
PVS, to prove properties automatically. As a third alterna-
tive, the user may invoke Salsa, which, in addition to analyz-
ing the specification for Disjointness and Coverage, can also
check specifications for application properties. In applying
either TAME or Salsa to verify application properties, the
state invariants generated by the Invariant Generator may be
used as auxiliary lemmas. 

3.2 Constructing the specification

To construct a function table, the user invokes the Specifica-
tion Editor (see Figure 2) and pushes the Edit button to cre-
ate a table, selects the table class (e.g. event, condition, or
mode transition), and then enters the appropriate information
into the table. Tables 1–3, all constructed with the Specifica-
tion Editor, are function tables defining the values of the
three dependent variables in the CCS specification:
mcCruise, tDesiredSpeed and cThrottle. 

Table 1 is a mode transition table defining the new value
of the mode class mcCruise as a function of the current mode
and the monitored variables. For example, the first row of the
table states that if the current mode is Off and the driver
turns the ignition on, the new mode is Inactive, while the
third row states that if the system is in Inactive and the
driver puts the lever in const with the ignition on, the engine
running, and the brake off, the system enters Cruise mode. 

Table 2 is an event table defining the term tDesiredSpeed
as a function of the current mode and the monitored vari-
ables. The second row states that if the system is in Inactive
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and the driver changes the lever to const with the ignition
on, the engine running, and the brake off, the new value of
tDesiredSpeed equals mSpeed, the automobile’s current
speed. The first row contains an operator called DUR (or
DURATION), useful for specifying timeouts [61]. The
condition appearing in this row, “DUR(mLever=const) >
kStartIncr”, is true iff the length of time that the lever has
been in const exceeds the constant kStartIncr. The event
“@F(DUR(mLever=const) > kStartIncr)” occurs when the
lever is changed to some position other than const after
being in const for more than kStartIncr milliseconds. The
first row states that when the system is in Cruise and this
conditioned event occurs, the new value of tDesiredSpeed
is the actual speed. The presence of NEVER in the third row
indicates that no event can change the value of tDesired-
Speed when the system is in either Off or Override. 

Table 3 is a condition table defining the value of the con-
trolled variable cThrottle as a function of the modes, the
monitored variables, and the term tDesiredSpeed. The first
row states that in Cruise mode the system should accelerate
the automobile if the desired speed minus some constant tol-
erance kTolerance exceeds the actual speed or if the time
the lever is in const exceeds kStartIncr, and gives similar
conditions for when the system should decelerate the auto-
mobile or maintain the current speed. The second row states
that in modes other than Cruise, the throttle is off. 

As shown in Figure 2, the editor lists the dictionaries and
function tables under the label “Specification Contents”. By
double clicking on a dictionary type, the user can display,

and add entries to, the dictionary of that type. By double
clicking on a function table type, the user can list all vari-
ables of that type. In Figure 2, the user has clicked on the
entry, “Controlled Variable Tables,” and in response the edi-
tor lists the single controlled variable in the CCS specifica-
tion, cThrottle. Double clicking on “cThrottle” displays
Table 3. 

Each SCR specification contains six dictionaries. Figures
3–6 show the constant dictionary, the type dictionary, the
mode class dictionary and the variable dictionary for the
CCS. The constant dictionary in Figure 3 defines the values
and types of five constants, including the two constants,
kStartIncr and kTolerance, that appear in Tables 2 and 3.
The type dictionary in Figure 4 defines three user-defined
types: two enumerated types yLever and yThrottle and a
real-valued type ySpeed with values between 0.0 and some
constant kMaxSpeed. The mode class dictionary in Figure 5
lists the four modes in the single mode class mcCruise and
identifies the initial mode as Off. The variable dictionary in
Figure 6 defines the types, initial values, and accuracy
requirements of the state variables other than mcCruise: the
six monitored variables, the term, and the single controlled
variable.* (While listed in Figure 6, accuracy requirements
are not used at present in the automated analyses.)

Figures 7–8 show the other two dictionaries in SCR speci-
fications: the environmental assumption dictionary, which
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Figure 2  The Spec Editor lists the contents of the CCS specification

Table 2 Event table defining the term tDesiredSpeed

Table 1 Mode transition table defining the mode class mcCruise

*Not shown in Figure 6 (but appearing in Figures 9, 12, 13 and 15), is
“_DUR_mLever_EQ_const”, an extra term that the toolset creates to
denote DUR(mLever=const), the length of time the cruise control lever
has been in the const position.



defines constraints imposed on the monitored and controlled
variables by the system environment, and the assertion dic-
tionary, which lists application properties that the specifica-
tion is expected to satisfy. Checking whether the
specification satisfies the assertions helps uncover both
defects in the specifications and incorrectly formulated
assertions. Both the assumptions and assertions are
expressed as predicates on one or two states. This paper
refers to predicates on a single state as one-state properties,
predicates on two states as two-state properties, one-state

properties that are true in every reachable state as state
invariants, and two-state properties true in every reachable
transition as transition invariants.

The environmental assumption dictionary (see Figure 7)
lists four assumptions, all two-state properties, that constrain
the behavior of the CCS. Assumptions N1 and N2 limit the
rate at which the automobile can accelerate or decelerate
from one state to the next using the constants kMaxAccel and
kMaxDecel. Assumption N3 states that, starting from any
position other than release, the driver can only move the
lever to release. Assumption N4 states that the monitored
variable time must be nondecreasing. The assertion dictio-
nary (see Figure 8) lists ten assertions, three two-state prop-
erties (A5, A6, and A9) and seven one-state properties. Both
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Table 3 Condition table defining the controlled variable cThrottle

Figure 3 The Constant Dictionary for the CCS

Figure �� The Type Dictionary for the CCS�Figure 4 The Type Dictionary for the CCS

Figure 5 The Mode Class Dictionary for the CCS

Figure 6 The Variable Dictionary for the CCS

Figure 7  The Environmental Assumption Dictionary for the CCS



the assumptions and assertions are expressed in the same
notation as the tables with the addition of “=>” for implies
and “<=>” for iff. Hence, assertion A1 states that “if mBrake
is true, then cThrottle is off”, and assertion A7 states that
“mcCruise is off iff mIgnOn is false.” 

3.3 Checking well-formedness

3.3.1 The Consistency Checker
After the tabular specification has been created, the consis-
tency checker (CC) [26] can be invoked to check the specifi-
cation for well-formedness (see Figure 9). Among the errors
the CC detects are syntax and type errors, duplicate names,
unspecified and unused variables, missing or inconsistent
initial values, circular definitions, and violations of the Dis-
jointness and Coverage Properties. 

To check a table for Disjointness or Coverage, the CC
checks a logical formula for validity. For example, to check
two conditions c1 and c2 in a row of a condition table for
Disjointness, the CC checks the validity of the formula
¬[c1 ∧ c2]. To check conditions c1, c2, ..., cn in a row of a
condition table for Coverage, the tool checks the validity of
the formula [c1 ∨ c2 ∨ ... ∨ cn]. To apply these checks, the
CC adds extra information when necessary, such as the defi-
nitions of variables that appear in the formula and environ-
mental assumptions (including the One Input Assumption).
When the CC detects either a Coverage or a Disjointness
error, it provides detailed feedback to facilitate correction of
the error – it identifies the location of the error in the table
and displays a counterexample in the form of a predicate on
a state or state pair. In the case of a Disjointness error, the
counterexample identifies a situation in which a table
defines the value of a variable ambiguously. In the case of a
Coverage error, the counterexample identifies a situation in
which a table fails to define the required behavior. 

To demonstrate how the CC handles a Disjointness error,
we have modified Table 1 to include between rows 3 and 4 a
new row stating, “If in Cruise the driver moves mLever to
off when mBrake is FALSE, then the new mode is Off” (see
Table 4) and then invoked the CC on the modified specifica-
tion by pushing the CC’s All Checks button. The Results
Box in the middle of Figure 9 reports a Disjointness error.
Double clicking on the line “Disjointness ERROR...” dis-
plays the table containing the error with the pair of entries
that overlap highlighted (see Table 4) and a specific case of
overlap (i.e. a counterexample) in the CC’s Messages Box
(see the bottom of Figure 9). This message states that any
pair of adjacent states satisfying mLever = release ∧
mLever’ = off ∧ ¬mBrake ∧ ¬mBrake′ ∧ mcCruise =
Cruise satisfies both highlighted entries. 

To check the two entries for Disjointness, the CC ana-
lyzed the formula, ¬[(@T(mLever = off) ∧ ¬mBrake) ∧
(@T(mBrake) ∨ @T(mLever = off))], which can be rewritten
as ¬[(@T(mLever = off) ∧ ¬mBrake ∧ @T(mBrake)) ∨
(@T(mLever = off) ∧ ¬mBrake ∧ @T(mLever = off))]. The
first disjunct inside the square brackets simplifies to false
due to the One Input Assumption. The second disjunct can
be simplified to @T(mLever = off) ∧ ¬mBrake, which does
not simplify to false. Hence, the original formula is not
valid. This simplification of the second disjunct forms the
basis for the counterexample displayed in the Messages Box. 

While deleting the fourth row from Table 4 and invoking
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Figure 8 The Assertion Dictionary for the CCS

Figure 9 Applying the Consistency Checker to the CCS specification

Table 4 Mode transition table for mcCruise containing a disjointness
error

ble �� Mode transition table for mcCruise containing a disjointness err



the CC removes the Disjointness error from the table defin-
ing mcCruise, the CC has identified another possible
Disjointness problem in the table defining cThrottle – the
message “Disjointness WARNING...” in Figure 9 indicates
that the CC cannot decide whether the Disjointness property
has been violated. The problem is the combination of num-
bers and arithmetic in the definition of cThrottle. Because
CC was not designed to analyze predicates involving numer-
ical constraints, it cannot reason about the relationship
between predicates such as “tDesiredSpeed – kTolerance

> mSpeed” and “tDesiredSpeed + kTolerance < mSpeed”.
To address this and other limitations of CC, the property
checker was developed. 

3.3.2 The Property Checker
The property checker Salsa [6] analyzes state machine
descriptions in a language called SAL (SCR Abstract Lan-
guage). The toolset automatically translates an SCR specifi-
cation into SAL. Like CC, Salsa can analyze a specification
for Disjointness and Coverage and thus checks formulae in
the forms given in Section 3.3.1. Also like CC, Salsa may
add information to the formula, such as environmental
assumptions and definitions of variables that appear in the
formula. After an initial term-rewriting phase, Salsa applies
a set of decision procedures, using BDDs (Binary Decision
Diagrams) to analyze propositional formulae and formulae
containing enumerated type variables and a constraint solver
to reason about linear integer arithmetic (Presburger arith-
metic) formulae. Salsa’s decision procedures for proposi-
tional logic and enumerated types are based on standard
BDD algorithms [9]. Its decision procedure for integer linear
arithmetic uses the automata-theoretic algorithm of Boudet
and Comon [8], extended to handle negative numbers as pro-
posed by Wolper [62]. Salsa integrates these decision proce-
dures with the BDD algorithms. 

Salsa decides that a property is valid if it is able to refute
the negation of the formula being analyzed. In the initial
step, a BDD is constructed which uses fresh boolean vari-
ables to represent each integer constraint and each enumerat-
ed type expression in a given formula. Searching for a
feasible path in the BDD from root to true yields a set of
associated integer constraints. If each such set is infeasible
(i.e. has no solutions), the property holds. If not, an assign-
ment of variable values that satisfies the constraints is
returned as a possible counterexample. 

Due to its more powerful decision procedures, Salsa can
establish the Disjointness and Coverage Properties in certain
situations where CC cannot. For example, in analyzing the
CCS specification, Salsa was able to establish the Disjointness
Property for Table 3, the condition table which defines
cThrottle, whereas CC could not (see Figure 9). In addition,
for propositional reasoning, the BDD-based algorithm of Salsa
has proven more efficient than the modified semantic tableaux
algorithm of CC. (However, because most consistency check-
ing, even of specifications for practical systems, evaluates
tables defining relatively simple functions, the tableaux-based
CC continues to be useful.) To illustrate its utility for checking
Disjointness, we applied Salsa to the modified mode transition
table in Table 4. Salsa generated the same counter-example
(see Figure 10) as CC with some added information.*

3.3.3 The Dependency Graph Browser
A limitation of tabular notations is that understanding how
different tables are related can be difficult, especially for
large specifications. To address this problem, the SCR
toolset contains a Dependency Graph Browser (DGB), which
constructs a graph showing the dependencies among the
variables defined by the tables. Figure 11 contains a graph
showing the variable dependencies in the CCS specification.
In the graph, the monitored variables appear on the left, the
controlled variables on the right, and the mode classes and
terms in the middle. This graph shows, for example, that the
value of mcCruise depends on its previous value (denoted by
the backward arrow inside the node for mcCruise) and the
values of four monitored variables and that the value of
cThrottle depends (directly) on the values of mcCruise,
tDesiredSpeed, and three monitored variables. 

The dependency graph can be used to navigate the specifi-
cation. For example, in Figure 11, double clicking on the
node for cThrottle displays Table 3, while shift double
clicking displays the variable dictionary in Figure 6 with the
entry for cThrottle highlighted. In addition, the user can
select a subgraph closed under the dependency relation (e.g.
in Figure 11, the nodes for mcCruise and the four monitored
variables upon which mcCruise depends), and save the SCR
specification associated with that subgraph in a file. This
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*Some of the added information in Figure 10 (e.g. that listed under 

Additional Constraints) overlaps information in the Assumption Dictionary,
while other information (e.g. that time and mSpeed are unchanged) can
be inferred from the One Input Assumption.

��� Counterexample returned by Salsa for violation of Disjointness PrFigure 10 Counterexample returned by Salsa for violation of Disjointness 

Figure 11  The dependency graph for the CCS



smaller SCR specification satisfies the SCR formal model
and can therefore be analyzed separately from the larger
specification using the SCR tools. This capability to extract
a smaller SCR specification and analyze it separately is
especially useful for understanding and analyzing the large
specifications associated with most practical systems, for
example, the weapons control system described in [25]. Such
specifications are so large that sometimes their dependency
graphs cannot be displayed in full on the user’s display.
Thus, it is often useful to decompose them into smaller,
more manageable specifications using the DGB.  

3.4 Validating the specification

3.4.1 The Simulator
To initiate simulation, the user loads a scenario – a sequence
of monitored variable values which implicitly define a
sequence of monitored events – into the Simulator. To exe-
cute the scenario, the user either uses the Step button to
move through the scenario one step at a time or presses the
Run button to execute the entire sequence with a single com-
mand (see the Simulator Display in Figure 12). To compute
each new state from a monitored event and the current state,
the Simulator applies the transform function T of our
requirements model. As each new state is computed, the
Simulator Display is updated to reflect the new state. During
simulation, the user may display a Log (see Figure 13) of the
state history. The Log displays the initial state in full. For
each subsequent state, it lists the monitored event that
caused the transition along with each dependent variable
whose value has changed. During simulation, the Simulator
may, at user request, check both the assumptions and the
assertions. When an assumption or assertion is violated, the
Simulator notifies the user of the violation. 

To illustrate simulation, we loaded a ten-step scenario
into the Simulator (see the scenario under Pending Events in
Figure 12). As one steps through this scenario, new values of
the variables appear in the top half of the Simulator Display.
For example, the Simulator Display in Figure 12 shows and
highlights the values of the three variables that change at
step 10, namely, mBrake, mcCruise and cThrottle. 

In addition to describing the initial state and the history of
state changes, the Log in Figure 13 reports two problems: 1)
at step 6, assumption N1 is violated (because the automobile
speed increased by more than kMaxAccel = 6), and 2) at step
9, assertion A5 is violated. Double clicking on the name of
the violated assumption or assertion displays the appropriate
dictionary with the violated property highlighted. For
example, clicking on “ASSERTION FAILED: A5” (see Figure
13) displays the Assertion Dictionary shown in Figure 8
with the entry for A5 highlighted. Double clicking on
“cThrottle = off”, a dependent variable that changed dur-
ing step 10 (see Figure 13), displays Table 5 with the rule
that caused cThrottle to change highlighted. This informa-
tion is useful in helping the user understand and correct the
error. Changing this scenario so that it does not violate
assumption N1 (e.g. change Step 6 to “mSpeed = 12”) and
running the modified scenario through the Simulator also
violates A5, thus demonstrating that A5 is not an invariant of
the CCS specification. 
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Figure 12  Simulator Display showing a scenario containing ten events

Figure 13  Simulator Log showing violations of an assumption and an
assertion



3.4.2 The Invariant Generator
The SCR invariant generator is based on two algorithms that
construct state invariants from the tables defining the depen-
dent variables [37, 38]. Suppose that dependent variable r
has values in a finite set {v1, v2, ..., vn}. If r is defined by a
mode transition table or event table, then for each vi, the
algorithm generates an invariant of the form 

r = vi ⇒ Ci

where Ci is a predicate over variables upon which r depends. 
Invariant generation from a mode transition or event table

is based on the following intuitive result from [3]: In an SCR
specification, r = vi ⇒ Ci is an invariant if 1) Ci is always true
when r’s value changes to vi (or r = vi initially), and 2) the
event @F(Ci) unconditionally  causes r to have a value other
than vi. Since stronger invariants may be computed using
knowledge of previously computed invariants, the full algo-
rithms repeat the computations of the set of invariants until a
fixpoint is reached. 

In SCR, a condition table for a variable r defines a total
function if it satisfies the Disjointness and Coverage Proper-
ties. This one-state function can be represented syntactically
as an expression E over the variables on which r depends.
This expression captures the content of the condition table. If
this table passes the Consistent Initial State check, i.e. r and E
have the same value in any initial state (see Figure 9), then r =
E is a state invariant. From this general result for r defined by
a condition table, we may generate a state invariant for each

value vi of r in the form 

r = vi ⇔ Ci

where each Ci is the simplification of the expression E = vi.
In many cases, such as the condition table defining
cThrottle in Table 3, the expressions Ci in such invariants
are easily determined directly by inspection of the table. 

The implementation of the SCR invariant generator has
been extended to apply the algorithms described in [37, 38]
to all formulae containing Boolean variables and enumerated
type variables that have been derived from the tables that
comprise an SCR requirements specification. Table 6 lists
seven invariants, I1-I7. The tool generated I1-I4 automatical-
ly from the mode transition table defining mcCruise and
invariants I5 and I6 from the condition table defining
cThrottle (along with similar invariants for cThrottle with
the values maintain or decel). Manual application of the
algorithm generated invariant I7 from the event table defin-
ing _DUR_mLever_EQ_const, a table constructed automatically
by the toolset. Our tool could not generate this invariant auto-
matically because the table contains a numerical expression.

3.5 Analyzing application properties

3.5.1 The Model Checker
A model checker, such as SPIN [35], can analyze a finite
state specification for application properties, e.g. the proper-
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Table 5 Table defining cThrottle with rule highlighted

Table 6 Automatically generated state invariants for the CCS
�������������������������������������������������������������������������������������

Description Generated Invariant�������������������������������������������������������������������������������������
I1 In Off mode, the ignition is off mcCruise = Off� NOT mIgnOn�������������������������������������������������������������������������������������
I2 In Inactive mode, the ignition is on mcCruise = Inactive � mIgnOn�������������������������������������������������������������������������������������
I3 In Cruise mode, the ignition is on, mcCruise = Cruise � mIgnOn

the engine is running, the brake is AND mEngRunning AND NOT mBrake
off, and the lever if not off AND mLever != off�������������������������������������������������������������������������������������

I4 In Override mode, the ignition is on mcCruise = Override
and the engine is running � mIgnOn AND mEngRunning�������������������������������������������������������������������������������������

I5 The throttle is off iff the cThrottle = off� mcCruise != Cruise
system is not in Cruise mode�������������������������������������������������������������������������������������

I6 The throttle is accel iff the system is in cThrottle = accel� mcCruise = Cruise
Cruise mode and either desired speed minus AND (tDesiredSpeed - kTolerance > mSpeed
tolerance exceeds actual speed or the lever OR DUR(mLever = const) > kStartIncr)
has been in const more than kStartIncr�������������������������������������������������������������������������������������

I7 If the lever has been in const for DUR(mLever = const) > 0� mLever = const
some time then the lever is const��������������������������������������������������������������������������������������
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ties listed in Figure 8. To use model checking either for veri-
fication or to detect property violations, the state explosion
problem must be addressed, i.e. the size of the state space to
be analyzed must be reduced. 

Most users of model checkers perform such reductions
routinely, but usually in ad hoc ways: the correspondence
between the “abstract model” and the original specification is
based on informal, intuitive arguments. To make model
checking more accessible to software developers and to
reduce the need for ad hoc abstraction, we have developed
methods for automatically constructing sound and sometimes
complete abstract models from specifications based on the
property to be analyzed [7, 25]. In a sound model, each prop-
erty that holds in the model corresponds to a property that
holds in the original specification. In a complete (or refuta-
tion-sound) model, each property violation in the model cor-
responds to a property violation in the original specification.
One abstraction method called slicing, which produces sound
and complete abstract models, removes all irrelevant vari-
ables from the specification. Another abstraction method,
called variable abstraction, replaces a variable having a large
(often infinite) type set with another variable having a small-
er, discrete type set. Done with appropriate attention to the
values to which the variable is compared in the specification
and the property to be verified, variable abstraction produces
sound, and sometimes complete, abstract models [25]. 

Our approach to model checking consists of three steps.
First, based on the property, an abstract model is constructed.
Next, the abstract model is automatically translated from
SCR to the language of the model checker, and the model
checker is invoked to analyze the property. Finally, if the
model checker detects a property violation, the counterexam-
ple produced by the model checker is translated into a corre-
sponding counterexample in the original specification.* This
last step is crucial because the user’s understanding of the
system will be in terms of the original specification rather
than the abstract model. 

Although addressing the state explosion problem required
significant effort, model checking was effective in verifying
seven of the ten CCS properties, in partially verifying
an eighth, and in detecting violations of the remaining
two    properties. Because three numeric variables, mSpeed,
tDesiredSpeed and time, have infinitely many values,
reducing the state space of the CCS specification was essen-

tial. To model check A3 and A7, we used slicing to eliminate
all irrelevant variables from the specification. For example,
to automatically construct the abstract model for A3 using
slicing, we invoked the DGB, displayed the Assertion List,
and selected A3; after the DGB identified the subgraph of
variables needed to analyze A3, we saved the CCS specifica-
tion associated with this subgraph to a file (see Figure 14).
The resulting abstract model, which is sound relative to A3,
contains five variables, mcCruise and the four monitored
variables on which mcCruise depends. It has a much smaller
state space than the original specification since it omits the
three numeric variables mSpeed, tDesiredSpeed and time.
Next, the toolset translated the abstract model from SCR into
Promela, the language of SPIN, and executed SPIN on the
Promela code. A similar procedure was used to model check
A7. SPIN verified that the abstract model, and hence the
CCS specification, satisfies both A3 and A7. 

Because the six assertions A1, A2, A4, A5, A6, and A8 all
refer to cThrottle, which depends directly or indirectly on all
other variables, slicing cannot remove any irrelevant variables.
To reduce the state space of the specification prior to analyz-
ing these six properties, we constructed an abstract model
describing a proper subset of CCS behaviors that is sound for
refutation, though not for verification. To do so, we changed
the type ySpeed from real to integer and the units of time from
milliseconds to tenths of seconds and reduced the maximum
automobile speed from 180 to 10 mph. Running SPIN on this
abstract model generated counterexamples for properties A2
and A5, which were validated using the Simulator

Because model checking the abstract model used to refute
properties A2 and A5 did not detect violations of properties
A1, A4, A6, and A8, we tried next to verify these properties.
We succeeded in doing so by constructing an abstract model,
in an ad hoc fashion, that is sound for verification. The
approach used to construct the abstract model is a variant of
predicate abstraction. The model eliminates the real valued
variables tDesiredSpeed, mSpeed and time, and introduces
two new variables, tSpeedDelta and tLeverConst, to capture
the information in the expressions tDesiredSpeed - mSpeed

and DUR(mLever = const) > kStartIncr. Paying attention
to the important threshold values of tDesiredSpeed - mSpeed

allows tSpeedDelta to be assigned an enumerated type with
five values rather than type real. To achieve soundness, a third
new “driver” variable is introduced to ensure that all simulta-
neous changes in value of the new variables evaluated in the
context of the original specification are covered in the abstract
model.  

Because properties A9 and A10 both refer to
tDesiredSpeed, which depends directly or indirectly on all the
other variables except cThrottle, slicing on these properties
eliminates only cThrottle. Since cThrottle has only four
possible values, the reduction in size of the state space is
small. Again, ad hoc abstraction is needed to verify these
properties using SPIN. (These two properties have been veri-
fied using both the verifier and the property checker; see Sec-
tions 3.5.2 and 3.5.3.) Because property A10 can be
reformulated in terms of tSpeedDelta, it is possible to verify
it with SPIN using the same abstraction used to verify A1,
A4, A6, and A8. However, verifying property A9 with SPIN
is not as simple. First, because the validity of A9 depends on
the environmental assumptions, which are not included in the
Promela translation of the CCS specification, verifying A9
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*If the abstract model is not complete, the counterexample constructed by
the model checker may not correspond to a valid counterexample in the
original specification.

Figure 14  Constructing an abstraction using slicing



would require the assumptions to be included as a hypothesis
on A9. Second, state explosion needs to be addressed. We
discovered that eliminating the variables cThrottle and time
and replacing DUR(mLever = const) > kStartIncr with the
new variable tLeverConst allowed SPIN to terminate, pro-
vided the constant kMaxSpeed was reduced sufficiently. How-
ever, formally establishing that this abstract model is
sufficient to verify property A9 would require us to prove a
theorem to that effect. Since theorem proving is able to
establish the property directly, we did not put forth the extra
effort required to verify A9 using SPIN.

3.5.2 The Verifier
The verifier TAME, an interface to the theorem prover PVS,
simplifies the use of PVS to specify and prove properties of
addressing the environmental assumption and state explosion
problems as described automata models by supplying tem-
plates for specifying automata (i.e. state machine) models
and more than 20 specialized strategies that provide high-lev-
el proof steps for proving invariant properties. Recently, sup-
port for proving refinement properties has been added.
Initially developed for timed automata [46], TAME has also
been adapted to the state machine model that underlies SCR
[1]. TAME's strategies [2] are supported by a standard set of
theories together with both auxiliary theories and auxiliary
strategies associated with a particular template instantiation.
TAME is integrated into the SCR toolset by an automatic
SCR-to-TAME translator which uses information from an
SCR specification to fill in TAME’s SCR automaton tem-
plate and which generates the associated auxiliary theories
and strategies. 

TAME provides two strategies, SCR_INV_PROOF and
ANALYZE, especially designed for SCR. The strategy
SCR_INV_PROOF, which proves many invariants automat-
ically, determines whether a property is a one-state property
or a two-state property, and attempts accordingly either an
induction proof or a direct proof using the transition relation.
When the proof does not complete, SCR_INV_PROOF
explores whether any combination of the automatically gen-
erated state invariants (see Section 3.4.2) can complete the
proof. This is done by applying, in each unproved subgoal,
one or more of the generated invariants, and backtracking if
the subgoal is not proved. For each proved subgoal, TAME
determines exactly which auxiliary invariants are needed.
Through an optional numerical argument to
SCR_INV_PROOF, the user may limit the size of the com-
binations of generated invariants to be tried. 

When a proof fails, SCR_INV_PROOF generates as
unproved subgoals one or more dead ends. From these dead
ends, ANALYZE helps the user determine whether the
invariant is false or whether additional invariants can be
used to complete the proof. Associated with each dead end is
a set of problem transitions that either do not preserve the
invariant (for state invariants) or violate the invariant (for
transition invariants). ANALYZE causes PVS to display
details of the problem transitions, including the monitored
event, known values of variables in the prestate or poststate,
and variables whose values are unchanged. A prototype
translator has been built which represents this information as
a predicate on state pairs. TAME’s feedback from failed
proofs is more extensive than the feedback from the proper-
ty checker (see Section 3.5.3). That is, every possible

problem transition is represented among the proof dead
ends. While an individual problem transition may help
determine whether some state history leads to a violation,
the full set of problem transitions contains all transitions
corresponding to violations and may also suggest how
to modify an assertion to make it true. In fact, the
assertion A10 was arrived at based on the information in
the full set of counterexamples to the candidate property
tDesiredSpeed=mSpeed => cThrottle=off. 

While, in SCR specifications, abstractions such as slicing
can reduce both the number of induction cases and the com-
plexity of reasoning about state transitions, the CCS specifi-
cation was small enough that TAME could be used without
abstraction. The strategy SCR_INV_PROOF automatically
verified the eight true assertions, namely, A1, A3, A4, and
A6-A10 (see Figure 8). It proved A7-A10 directly without
invariants. Completing the proofs of the remaining true prop-
erties – A1, A3, A4, and A6 – required the use of generated
invariants (see Table 6) as auxiliary lemmas. Although
almost all branches in these proofs required only a single
invariant, namely, I3, completing the proof of property A3
required three invariants, I2, I3, and I4, thus demonstrating
that combinations of the invariants can be useful. As shown
above, the remaining two assertions, A2 and A5, are false.
For A5, TAME produces 23 dead ends. The first of these
subsumes the state pair detected by Salsa (see Figure 15 in
Section 3.5.3). For A2, TAME produces two dead ends
which cannot be proved using the generated invariants. 

3.5.3 The Property Checker
To analyze application properties such as those listed in Fig-
ure 8, Salsa carries out an induction proof, treating all of the
automatically generated invariants (see Table 6) as axioms.
Salsa also applies slicing to remove all variables irrelevant to
a property’s validity from the specification. When a proof
fails, Salsa returns a state pair. Because the transition repre-
sented by the state pair may be unreachable, the user must
show either that the property is false by finding a scenario
which violates the property or that the property is true by
applying additional invariants to complete the proof. 

Salsa was applied to all of the assertions listed in Figure 8.
Applying Salsa was more automated than applying SPIN
since Salsa required no manual abstraction. Like TAME,
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Figure 15  State pair predicate returned by Salsa for A5



Salsa was able to verify eight assertions – A1, A3, A4, and
A6-A10. In each case, its proof times were faster than those
of both SPIN and TAME. Salsa produced a single state pair
for each of the false properties, A2 and A5. The state pair
returned by Salsa for A5 is shown in Figure 15. This state
pair can be used in conjunction with the Simulator to derive a
valid counterexample for A5. 

The utility of automatically generated invariants was
demonstrated both in verifying properties with Salsa and in
producing a state pair that can be associated with valid coun-
terexamples. As shown in Section 3.5.2, invariants are need-
ed to verify four properties – A1, A3, A4, and A6. By
including all of the automatically generated invariants in its
analysis, Salsa established the validity of all of these proper-
ties. However, in the initial analysis of property A2 with Sal-
sa, invariant I7 (see Table 6) was omitted. The state pair
predicate returned by Salsa as one of the possible problem
transitions for A2 required that, in the old state, the lever is
not in const, but the length of time that the lever has been in
const exceeds kStartIncr – a contradiction. Thus a coun-
terexample that ends in this state pair is infeasible. Including
invariant I7, which states that DUR(mLever=const) > 0 ⇒
mLever=const, eliminates this problem transition and pro-
duces a state pair that can be used in conjunction with the
Simulator to derive a valid counterexample for A2. 

4. APPLYING THE TOOLS TO 
PRACTICAL SYSTEMS

Currently, more than 200 academic, industrial, and govern-
ment organizations in the U.S., Canada, and a number of oth-
er countries are experimenting with the SCR tools. The
utility of the SCR tools has also been evaluated in four case
studies involving real-world systems. In one study, NASA
researchers used the CC to detect several missing assump-
tions and instances of ambiguity in the requirements specifi-
cation of the International Space Station [11]. In a second
study, engineers at Rockwell Aviation used the SCR tools to
detect 28 errors, many of them serious, in the requirements
specification of a flight guidance system [49]. In the Rock-
well effort, one-third of these errors were found by entering
the tabular requirements specification into the SCR toolset,
another third by applying the CC, and the remaining third by
running scenarios through the Simulator. These results sug-
gest that different tools find different classes of errors. 

In a third study, our group at NRL used the SCR tools to
expose several errors, including a safety violation, in a mod-
erately large contractor-produced specification of a U.S.
weapons control system [25]. This contractor specification,
which contains over 250 variables, and six safety properties,
was translated semiautomatically into the SCR tabular nota-
tion. By applying slicing and variable abstraction to the SCR
specification and then invoking SPIN on an abstract model
that was sound but not complete, a possible safety violation
was detected. Translating the counterexample returned by
SPIN, which was in terms of the abstract model, into a corre-
sponding counterexample in the original specification and
running the counterexample through the Simulator validated
that the detected violation was an actual violation. 

In a fourth study, our group used the SCR tools to specify

the requirements of a cryptographic device (CD), to verify
that the CD specification satisfies seven security properties,
and to demonstrate that the specification violates an eighth
property [39]. Although model checking with SPIN was use-
ful in performing sanity checks, it was not useful in either
verifying or refuting these security properties. Instead, both
TAME and Salsa, in combination with several invariants
generated by the invariant generation algorithm, verified the
seven safety properties. They also refuted a property
(although experimentation with the Simulator was needed to
validate that a counterexample satisfying the state pair predi-
cates returned by Salsa and TAME was feasible). To be use-
ful in practice, the benefits of using a method should be
sufficient to warrant the cost in human effort of applying the
method. In the latter two projects, the potential cost-effec-
tiveness of the SCR tools was demonstrated: in each case,
specifying and analyzing a moderately complex system
required less than five person-weeks of effort. 

The SCR tools are also being used in software practice.
The largest industrial users of the SCR technology are three
sites of Lockheed Martin where the tools have been used
since 1999 to construct and analyze requirements for flight
control and flight guidance systems, fire control systems, and
many other avionics applications. In addition, our group at
NRL is using the tools to construct a formal specification of,
and to verify, the security kernel of a second member of the
CD family of cryptographic devices. The formal specifica-
tion and proofs of the kernel properties and the results of our
tool-based analysis will comprise a significant component of
the evidence that the National Security Agency considers in
evaluating CD II for certification. Finally, as part of their
program in Software Engineering Research Infusion, NASA
recently identified the SCR technology as one of a group of
technologies [50] that are “sufficiently mature and promising
that they can be adopted by NASA development teams.”
Recently, NRL conducted a course to introduce NASA soft-
ware analysts to the SCR method and tools and to demon-
strate the use of SCR to check the current requirements
document for a safety-critical software component of the
International Space Station. 

5. MORE ABOUT THE SCR TOOLS

5.1 A graphical front-end for the simulator

With a Graphical User Interface Builder, a graphical front-
end can be quickly built and attached to the Simulator, there-
by producing a rapid prototype for demonstrating and
validating the required behavior of the system under develop-
ment [24, 29]. A specifier or a developer can run scenarios
through this prototype and thus demonstrate the behavior
represented by the SCR requirements specification. More
important, without understanding the SCR tables or the
generic interface to the Simulator, a customer or a future sys-
tem user can execute the prototype to ensure that the SCR
specification captures the intended behavior. Raising ques-
tions about the specified behavior, identifying missing or
misspecified behavior, and changing the specification to
remove any detected errors can lead to significant improve-
ments in the specification.
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5.2 Constructing and testing a system 
implementation

While specifying, verifying, and validating the system
requirements is important, especially in the development of
safety-critical systems, ultimately a system must be con-
structed that satisfies the requirements. A specification that
has been verified and validated using the SCR tools provides
a solid basis both for developing executable code and for
generating “test cases” useful in evaluating a system imple-
mentation. Although automatically generating code may be
infeasible for some purposes (e.g. code that implements com-
plex algorithms or provides an interface to a physical
device), such an approach is feasible for code that imple-
ments a program’s control logic. In the latter cases, the code
can be automatically generated from an SCR requirements
specification. Recently, we have developed a grammar and a
set of semantic rules to describe SCR specifications and used
the APTS transformational system [51] to automatically gen-
erate C source code from an SCR specification for CD [39].
See [41] for details. 

To convince customers that the implementation is accept-
able and to detect errors, the system implementation must be
tested. An enormous problem, however, is that software test-
ing is extremely costly and time-consuming. It is estimated
that current testing methods consume between 40% and 70%
of the software development effort [4]. We have developed
an automated technique [15] and built a prototype tool in
Java that constructs a suite of test cases from an SCR require-
ments specification. (A test case is a sequence of system
inputs in which each input is coupled with the required sys-
tem outputs.) To ensure that the test cases “cover” the set of
all possible system behaviors, our technique organizes all
possible system executions into equivalence classes and
builds one or more test cases for each class. These test cases
can be used to automatically evaluate the implementation. By
reducing the human effort needed to build and to run the test
cases, this approach can reduce both the enormous cost and
the significant time and human effort associated with current
software testing methods.

5.3 Model checking versus theorem proving

Section 3.5.1 describes the use of model checking both to
verify and to refute properties. Due to the state explosion
problem, model checking is most often used not for verifica-
tion but to detect errors. In some cases, the use of model
checking to detect property violations may not succeed. For
example, in analyzing the CD specification, theorem proving
(rather than model checking) detected an invalid property –
the model checker ran out of memory prior to detecting any
violations [39]. 

To combat state explosion, users may construct an abstract
model of the specification, but as Section 3.5.1 suggests,
constructing an “acceptable” model often requires significant
effort. To detect property violations, an abstract model that is
complete is desirable. To verify a property, an abstract model
that is sound is desirable. The penalty for using an abstract
model which fails to be sound for refutation is not too serious
– if one finds that a violation in the abstract model does not

correspond to a violation in the specification (for example,
using simulation), one can either try to fix the abstract model
so that it is complete or find other violations in the abstract
model and check whether any of these correspond to viola-
tions in the original specification. 

In contrast, verification based on an unsound model is
dangerous, since a property that holds in an abstract model
may not correspond to a property that holds in the original
specification. To obtain sound models, we need techniques
that automatically construct sound abstractions (see, e.g.,
[17, 7, 25]) or that demonstrate (automatically, if possible)
the soundness of an abstract model relative to a selected
property. 

An advantage of theorem proving (e.g. using either TAME
or Salsa) over model checking is that it avoids the state explo-
sion problem, using only the facts needed to reason about a
property at a high level of abstraction. In theorem proving, the
construction of an abstract model is usually unnecessary. One
serious problem with theorem proving occurs, however, when
a proof fails – the user does not know whether the dead end
occurs because auxiliary lemmas are needed to complete the
proof or because the property is false. Techniques are needed
which use the information returned by TAME and Salsa to
determine whether a counterexample is feasible and, if so, to
construct such a counterexample. 

5.4 Advantages of a tool suite

As Section 3 shows, the analyses performed by some tools
can be used in later analyses by other tools. For example, the
TAME analysis uses variable dependency information and
assumes that the specification does not contain circular defi-
nitions or violations of the Disjointness Property  – each of
which is guaranteed by the Consistency Checker. Further,
both TAME and Salsa use the invariants generated by the
Invariant Generator in verification and in identifying candi-
date counterexamples. Moreover, the Simulator is an impor-
tant adjunct to the other analyses: it can be used both to
demonstrate property violations to users and to validate can-
didate counterexamples. Finally, several tools may be used to
perform sanity checks; for example, verifying the eight true
properties in Figure 8 using TAME, Salsa, and SPIN increas-
es confidence that these properties do indeed hold.

6. RELATED WORK

Our research on tabular notations and tools for analyzing
tables complements research on tabular expressions at
McMaster University. While the McMaster group has devel-
oped a general theory of tables [36] and tools for manipulat-
ing a general form of tables [56], we focus on a few simple
table types useful in specifying system requirements. In our
research, tables and their semantics are just one part of our
overall approach to specifying and analyzing state-based
requirements. 

Like SCR, the Requirements State Machine Language
(RSML) [43] is designed to specify system requirements.
Like the SCR model, the RSML model describes determinis-
tic, state-based behavior. RSML’s hierarchical graphical
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notation is borrowed from Statecharts [20]. To make RSML
specifications more readable, the guards on state transitions
are presented in special tables, called AND-OR tables. In
RSML, whose step semantics is similar to that of Statecharts,
a step is triggered by an external event and may include a
potentially infinite number of microsteps. Several tools have
been applied to RSML specifications: a BDD-based tool
which checks AND-OR tables for nondeterminism and miss-
ing cases [22], the Stanford Validity Checker which also
checks AND-OR tables for nondeterminism [52], and sym-
bolic model checking, which was used to check various prop-
erties, including safety properties [10]. Due to its simpler
step semantics, consistency checking in SCR is significantly
easier than consistency checking in RSML. 

To simplify the graphical representation of hierarchical
state machines and to eliminate the RSML step semantics,
which was difficult to understand and error-prone [42], two
new languages based on RSML, SpecTRM [44] and RSML–e

[60, 21], have been developed. Both languages have a step
semantics similar to SCR’s. A toolset NIMBUS, which
supports the prototyping of systems in RSML–e, includes
capabilities for consistency checking, simulation, model
checking, theorem proving, test case generation, and code
generation [21]. 

In the Input/Output Automaton (IOA) model [45], a for-
mal model for representing asynchronous concurrent sys-
tems, each automaton is defined by a set of states and a set of
parameterized actions. At each step, the automaton chooses
some action (enabled according to its “precondition”) and
performs updates to variables based on the “effect” of that
action. Recently, a complete textual language and toolset
have been developed to support the IOA model [16]. Cur-
rently, the toolset supports parsing and semantic analysis of
IOA models, simulation, theorem proving, and code genera-
tion. The tool TAME, described in Section 3.5.2, provides
automated support for specification and verification of both
the IOA model and the timed automata model. 

Originally designed as a reactive programming language
for critical “kernel” software, LUSTRE [19, 18] is a syn-
chronous data flow language which has also been used as a
hardware description language. In basic LUSTRE, programs
are represented in a textual language. In contrast, SCADE, a
commercial toolset for LUSTRE, uses a notation based on
operator network diagrams, a generalization of circuit dia-
grams. LUSTRE programs in textual form are a set of equa-
tions, each of which defines a new value for some variable
via some function of other variables. Such equations are
essentially a generalization of the definition of SCR depen-
dent variables via table functions. The prototype tools devel-
oped for LUSTRE perform theorem proving, model
checking, code generation, simulation, and test case genera-
tion. The toolset SCADE provides a graphical editor for cre-
ating operator network diagrams, simulation, and code
generation. 

7. CONCLUSIONS

This paper has described how tables may be used to organize
and to represent a state-based requirements specification,
the assumptions that constrain the specification, and the

properties that the specification is expected to satisfy. It has
also described how tools may be used to create and display
these tables and to show how they are related, to find errors
in tables and provide feedback useful for correcting the
errors, and to validate and verify properties of tabular speci-
fica-tions.

Our current research is building on both the SCR formal
model and the SCR method and tools. Among the research
topics we are investigating are the following: 

• the design of tabular representations and tool support of
more complex data structures (e.g. arrays and records),

• an XML-based intermediate representation for SCR that
will provide a standard interface for integrating tools
(both front-ends and back-ends) into the toolset, and 

• extension of the invariant generation algorithms to handle
logical expressions containing numbers and numerical
operations. 

A more long-term goal is to investigate two important but
very difficult problems in requirements. The first is to devel-
op libraries, templates, guidebooks, and other technology
that will help practitioners construct a precise, unambiguous
requirements specification. In teaching courses about the
SCR method, we have found that, for practitioners, con-
structing a well-formed, precise, unambiguous requirements
specification is a significant challenge. A second goal is to
develop technology that helps practitioners understand the
required system behavior. Needed is support for scenarios,
libraries, techniques that synthesize requirements specifica-
tions from scenarios, and other techniques that allow a user
to understand system and software requirements and translate
them into a rigorous requirements specification. 

A well-designed suite of tools can allow software practi-
tioners without advanced mathematical training and theorem
proving skills to perform relatively complex analyses of tab-
ular specifications. In our view, SCR offers such a suite of
tools and thus provides the basis for a practical method for
software developers to specify and analyze tabular represen-
tations of system requirements. 
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